I tu, com tens els cabells?
Sovint la forma del nostre cabell ens defineix i ens diferencia d'altres persones. Però, què fa que tinguem els cabells de diferent color i forma?
Entre 100.000 i 150.000 cabells que sobreixen el cap tenen la funció principal de protegir-lo i aïllar-lo per mantenir la calor corporal. Cada pèl es constitueix d'una arrel que neix dins d'un fol·licle pilós i una tija que creix fora de l'epidermis.
El que diferencia el tipus de cabells de cada persona és, per una banda els pigments que li donen color, i per l'altra banda, la orientació de fol·licle pilós i la forma de la tija. Barrejant els diferents colors i formes, obtenim tots els tipus de cabell!
Segons el pigment podem trobar cabell ros, pèl-roig (ambdos són caràcters molt recessius), castany, negre (el color majoritari) i gris o blanc (absència de pigment).
Pel que fa a la forma, podem trobar:
- -Llis: forma rodona i orientat en perpendicular a la superfície de la pell.
- -Ondulat: forma oval i formant un angle agut amb la superfície de la pell.
- -Arrissat: forma el·líptica i orientat en paral·lel amb la superfície de la pell.
Referent a la composició, els cabells humans estan formats, aproximadament, d'un 80% de queratina (una protïna estructural, dura i resistent, que apareix també a les ungles) i un 20% d'altres substàncies (lípids, aigua, sals minerals, pigments...).
A més, la major part de la queratirna està formada per un aminoàcid anomenat cisteïna que conté sofre. És per això que es formen ponts disulfur a la seva estructura, que són els que es trenquen quan ens fem una permanent (els líquids de permanents contenen substàncies químiques capaces de trencar els enllaços de sofre).
Mantenint el batec amb vida
Amb
aproximadament trenta-cinc milions de batecs per any, el cor humà és una
incansable maquinària el funcionament correcte de la qual és imprescindible per
la vida. Aventurem-nos en aquesta entrada a explorar breument la seva
estructura i funció, a comprendre per què al seu malfuncionament se li
atribueixen més del 13% de les morts en la població mundial i a entendre quines
eines estan al nostre abast per cuidar-lo.
Empresonat rere la caixa
toràcica i situat entre els dos pulmons, el cor humà és el motor que impulsa la
circulació sanguínia arreu del cos. Batec a batec, onades de sang s’estenen per
artèries i venes, nodrint tots els teixits que ens conformen i recollint el
rebuig produït per l’activitat cel·lular en dos recorreguts que acaben entrellaçant-se
en diferents punts per formar un únic circuit.
A nivell
estructural, el cor es divideix en cor esquerre i cor dret a través d’una paret
muscular i fibrosa anomenada septe cardíac. Cadascun dels recorreguts sanguinis
(arterial i venós) desemboca en costats oposats del septe, pel que
s’aconsegueix que la sang pobre en oxigen que recorre les venes no es barregi
amb la sang ricament oxigenada impulsada al llarg de les artèries.
Ambdues parts del
cor es divideixen a la vegada en dues cambres: una de superior, anomenada
aurícula; i una d’inferior, anomenada ventricle. El complex format per aquestes
quatre cambres és capaç de contreure’s i relaxar-se de manera coordinada
mitjançant impulsos elèctrics, caracteritzant així el fenomen conegut com a batec
que tindrà la funció de permetre la sortida – però també entrada – de sang.
Després d’haver
recorregut tot el cos, la sang pobra en oxigen que circula per les venes
conflueix en l’aurícula dreta a través de les dues venes caves. Entrem així en
la fase de relaxació o diàstole del cor, durant la qual l’aurícula s’omple de
sang i es relaxa, permetent el pas d’aquesta sang fins el ventricle dret
mitjançant la vàlvula tricúspide, que impedeix el seu retorn a l’aurícula. A
l’altra banda, l’aurícula esquerra s’omple simultàniament de sang oxigenada
provinent de les venes pulmonars, que gràcies a la dilatació del múscul (ja que
aquest esta en diàstole) pot travessar la vàlvula mitral per arribar al
ventricle esquerra.
Un cop els dos
ventricles s’han omplert de sang, la contracció del cor provoca el seu bombeig
cap als seus respectius destins: és la fase de sístole. Des del ventricle dret,
la sang pobra en oxigen recorrerà les artèries pulmonars i arribarà als alvèols
pulmonars, on es difondrà pels prims capil·lars i entrarà en contacte amb
l’oxigen que hem inspirat, oxigenant-se per tornar al cor per l’aurícula
esquerra i entrar-hi en la següent fase de relaxació. Des del ventricle
esquerra, la sang ja rica en oxigen és impulsada gràcies a la contracció del
cor per l’arc aòrtic, des d’on s’estendrà al llarg de tot el cos a traves de
les artèries per nodrir-ne tots els teixits.
Es curiós notar
que, tot i que normalment s’associa la sang ricament oxigenada amb artèries – i
la sang pobrament oxigenada amb venes -, les venes i artèries que uneixen cor i pulmons inverteixen les seves definicions. Així, l’artèria pulmonar permet el pas de la
sang pobrament oxigenada del ventricle dret als pulmons; mentre que la vena
pulmonar permet que la sang que ha estat oxigenada als pulmons pugui arribar a
l’aurícula esquerra.
Havent vist tot
això, és fàcil adonar-se que el correcte funcionament del cor resulta vital per
poder mantenir el cos amb vida. Quan el cor no bombeja amb la correcta força o
quan aquest no ho fa al ritme adequat i tots els òrgans del cos es veuen
privats del seu requisit de sang ricament oxigenada, el cos entra en xoc cardiogènic.
Si les necessitats de tots aquests òrgans no es veuen urgentment satisfetes,
arriba un punt en què el cos esdevé incompatible amb la definició de vida i es
declara l’afectat com a mort.
Les causes que
poden conduir a un mal funcionament del cor son moltes, però en molts casos
tenen a veure amb l’adquisició d’un estil de vida no saludable. Per exemple,
una falta d’exercici i/o una mala alimentació poden provocar l’acumulació de
materials grassos com el colesterol a les parets de les artèri es coronàries,
que són els vasos encarregats d’alimentar al propi cor amb sang ricament
oxigenada. Amb la obstrucció del pas de sang, el cor es veu privat d’oxigen i
falla en la seva funció de contreure’s per provocar el batec.
Aquest és tan sols
un exemple en l’amplíssim repertori que suposa la patofisiologia del cor. Totes
les condicions patològiques que inclouen el cor o els vasos sanguinis (o
ambdós) s’agrupen sota la denominació de “malalties cardiovasculars”, i es
consideren estadísticament la primera causa de mort a nivell mundial.
Tanmateix, i tot i
aquest panorama tan preocupant, s’ha demostrat que els adults que es mantenen
físicament actius, abandonen vicis com alcohol i tabac i cuiden la seva dieta
poden reduir el seu risc de desenvolupar alguna malaltia cardiovascular de
manera significativa. Això ens demostra que tot i que no tenim el poder de
canviar certs factors de risc – història familiar, sexe o edat –, sí que està a
les nostres mans adquirir hàbits saludables i, amb això, assegurar-nos que el
nostre cor batega com ha de bategar.
El pa de cada dia
El pas és una de les receptes més sencilles i antigues de la història de la humanitat, donat que només està fet amb aigua, farina, sal i llevadura.
La seva el·laboració consisteix en 3 passos importants:
- Amassar: amb la barreja de tots els ingredients es formen les xarxes de gluten, donant lloc a una massa homogènia i elàstica. Com més gluten tingui la farina, més forta serà la massa. A més, la capacitat del gluten per formar una xarxa esponjosa també depèn del pH de la farina que, idealment, hauria de ser al voltant de 5. Perquè una farina tingui aquest pH se la de deixar envellir, ja que les farines fresques tenen un pH de 6, aproximadament.
- Repòs: dóna lloc a la fermentació de la llevadura i el pa augmenta de volum. Els egipcis van ser els primers en elaborar el pa que coneixem avui dia, el que utilitza llevadura per tal que fermenti i es formi una massa esponjosa. La llevadura està formada per fongs microscòpics que provoquen la fermentació alcohòlica dels sucres de la farina (glucosa, maltosa i sacarosa), donant lloc a diòxid de carboni (el responsable dels típics forats de la molla del pa) i etanol:
Fermentacicó alcohòlica de la glucosa |
- Fornejar: s'evapora l'aigua i l'etanol i es moren els fongs de la llevadura. La massa crua elàstica agafa la consistència esponjosa i es forma el crostó dur i sec per la pèrdua d'aigua i la reacció de Maillard, per la qual adquireix un color marró més fosc que la molla.
Per acabar, si us heu quedat amb gana i voleu saber més coses sobre el pa, us deixo amb un vídeo molt complet del programa Collita pròpia de TV3:
L'enigma de les monedes
La setmana passada vam plantejar un enigma de probabilitat a les xarxes socials. Es tracta d'una simplificació que vam fer al problema conegut com el problema de Newton-Pepys.
En primer lloc, moltes gràcies als meus companys robòtics del blog Robologs, que em van donar a conèixer el problema. Robologs és un blog que sens dubte recomano a tots els amants dels enigmes i la informàtica.
Novament, m'agradaria remarcar que aquest no és el problema de Newton-Pepys, sinó que es tracta d'una simplificació que vam fer amb la finalitat de fer-lo més didàctic. El problema diu:
1. Què és més probable?
a) Tirar 2 monedes i obtenir com a mínim una cara.
b) Tirar 4 monedes i obtenir com a mínim dues cares.
c) Tirar 6 monedes i obtenir com a mínim tres cares.
2. Quines són les respectives probabilitats?
3. Quina és la probabilitat de tirar "2n" monedes i obtenir com a mínim "n" cares?
A contínuació, proposarem una solució al problema. Si vols pensar-lo, no segueixis llegint.
Resolució
De l'enunciat del problema cal remarcar el "com a mínim", perquè sense aquestes tres paraules el problema seria radicalment diferent.
Sigui $2x$ el nombre de monedes, $x$ el nombre mínim de cares que hem d'obtenir i $P(x)$ la probabilitat d'aconseguir aquest mínim de cares, és fàcil veure que $P(1) = 0.75$, ja que tres dels quatre possibles llançaments tenen èxit:
Imatge via Robologs |
En aquest cas és fàcil veure-ho "a ull", però per la resta de casos recorrerem a la combinatòria. Per aquells que no hi estigueu familiaritzats, aquest recurs us pot ser útil.
Què passa per $P(2)$?
Fixem-nos que, en aquest cas, el nombre de possibilitats serà $VR(2,4) = 2^4 = 16$, ja que:
- Importa l'ordre: La possibilitats "C C X X" i "X C X C" són diferents, encara que a efectes pràctics el resultat sigui el mateix.
- Es pot repetir: És trivial, ja que podem treure més d'una cara o més d'una creu.
Vist des d'un altre punt de vista: Hem d'assignar cara o creu a 4 monedes. Cada moneda té 2 possibilitats. Per tant, el nombre total de possibilitats serà $2·2·2·2 = 2^4 = 16$.
Ara bé, en quantes d'aquestes possibilitats hi ha 2 o més cares?
Per calcular això, el que fem és trobar el nombre de possiblitats amb 2, 3 i 4 cares i sumar-ho tot.
Podem trobar el nombre de maneres d'obtenir dues cares triant 2 de les 4 monedes. En aquest cas:
- No importa l'ordre: És el mateix triar la 1a moneda en primer lloc i la 2a en segon que triar la 2a en primer lloc i la 1a en segon.
- No es pot repetir: Trivial, no pots triar una moneda més d'un cop.
Per tant, aquest càlcul el podem fer com $C(4,2)= {4 \choose 2} = {4! \over2!·2!}=6$.
El nombre de possibilitats amb 3 i 4 cares es calcularan de la mateixa manera.
En resum, el nombre de possibilitats 2 o més cares serà:
$C(4,2)+C(4,3)+C(4,4)$
$={4 \choose 2}+{4 \choose 3}+{4 \choose 4}$
$=6+4+1=11$ possibilitats.
$={4 \choose 2}+{4 \choose 3}+{4 \choose 4}$
$=6+4+1=11$ possibilitats.
Per tant, $P(2) = {11\over16} = 0.6875$
Trobarem $P(3)$ de la mateixa manera que $P(2)$.
Nombre total de possibilitats: $VR(2,6) = 2^6 = 64$
Número de possibilitats amb 3 o més cares:
$C(6,3)+C(6,4)+C(6,5)+C(6,6)$
$=2^6-C(6,0)-C(6,1)-C(6,2)=64-1-6-15=42$
Per tant, $P(3)={42\over64}={21\over32}= 0.65625$
$C(6,3)+C(6,4)+C(6,5)+C(6,6)$
$=2^6-C(6,0)-C(6,1)-C(6,2)=64-1-6-15=42$
Per tant, $P(3)={42\over64}={21\over32}= 0.65625$
Com a conclusió, s'ha observat que el més probable és tirar dues monedes i que surti com a mínim una cara. A mesura que augmentem el nombre de monedes, observem una certa tendència a la baixa.
Passem ara a la generalització del problema. Hem de trobar una funció que determini, en funció de n, la probabilitat de treure n o més cares en tirar 2n monedes.
Nombre total de possibilitats: $VR(2,2n) =2^{2n}=4^n$
Sabem que:
$C(2n,0)+C(2n,1)+...+C(2n,2n)= \sum_{i=0}^{2n}{2n \choose i}= 2^{2n}=4^n$
De les propietats dels nombres combinatoris, coneixem que:
$C(p,q)={p \choose q}=C(p,p-q)={p \choose p-q}={p! \over {q!·(p-q)!}}$
Per tant:
$2·(C(2n, n)+C(2n,n+1)+...+C(2n,2n))-C(2n,n)=4^n$
$C(2n,n)+C(2n,n+1)+...+C(2n,2n)={4^n+C(2n,n) \over 2}$
Finalment tenim que:
$P(n)={{4^n+C(2n,n) \over 2}\over 4^n}={1\over2}+{{2n \choose n}\over 2^{2n+1}}$
Fixem-nos, a més que: $\lim\limits_{n \to \infty} P(n) = {1\over2}$ i, per tant, quantes més monedes tinguem, més s'acostarà la probabilitat al 50%.
L’ebola
El
1976 van ser detectats per primera vegada dos brots simultanis del virus de
l’ebola a dues viles de països diferents: una de Sudan i una altre de la
República Democràtica del Congo, prop
del riu Ebola (d’on proven tant el nom del virus com el de la malaltia que
provoca). Però des d'aleshores han passat uns trenta anys i ara s'ha convertit en una emergència mundial.
Transmissió
S’han
documentat casos d’infecció en humans associats a la manipulació de ximpanzés,
goril·les, ratpenats... infectats que havien sigut trobats o bé morts o bé
malalts a la selva. Es transmet per contacte estret amb els seus òrgans, la
seva sang, les seves secrecions o els seus líquids corporals. Un cop entre els
humans, la transmissió entre persones es du a terme per contacte directe,
exactament igual que entre humans i animals infectats. Val a dir, però, que
també es pot transmetre pel simple contacte indirecte amb materials que hagin
sigut contaminats pels líquids que s’han citat anteriorment.
Signes, símptomes
i mortalitat
En
qualsevol cas, no és per això que es prenen especials precaucions davant
d’aquest virus, sinó pel seu desconeixement (no se sap ben bé del cert si
aquestes són les úniques formes en què es pot transmetre) i per la seva
elevadíssima mortalitat. Després d’entre dos dies i tres setmanes de període
incubació (és a dir, de temps en que una persona es troba infectada però encara
no han començat a fer-se visibles els signes de la malaltia), comencen a
aparèixer els primers símptomes: una pujada sobtada de la febre, debilitat
intensa i dolors musculars, mal de cap i de coll... (semblants als d’un refredat
o d’una grip). Passats uns dies, comencen els vòmits, la diarrea... i, en
alguns casos, les hemorràgies internes i externes. Si es sobreviu (la taxa de
mortalitat es troba al voltant del 90% en el brot d’aquest any), el pacient
encara serà contagiós mentre el virus es trobi a la seva sang i a les seves
secrecions. I això serà durant aproximadament dos mesos.
Tractament
Quant
al tractament, s’estan provant diverses vacunes però, segons l’Organització
Mundial de la Salut, encara cap “està disponible per a usos cínics”. Les
investigacions són complicades perquè no es coneixen totes les proteïnes del
virus i perquè hi ha pocs laboratoris equipats per treballar amb un virus com
aquest.
Així
doncs, com que els malalts solen estar deshidratats, necessiten rehabilitació
per via intravenosa o oral, però no existeix més tractament fora del
simptomàtic (és a dir, aquell que intenta alleujar els símptomes del pacient,
com la febre, perquè el sistema immunològic del pacient pugui defensar-se per
si sol).
Per
a donar una idea de la situació que ha dut la OMS ha considerar l’ebola una
emergència a nivell mundial, a continuació es presenten les dades dels darrers
i una gràfica orientativa:
Data
|
Lloc
d'aparició
|
Casos/morts
(taxa de mortalitat) |
1994: desembre - febrer
|
Gabon
|
49/29 (59%)
|
1995: abril - juny
|
Zaire (actualment RDC)
|
345/256 (74%)
|
1996: gener - abril
|
Gabon
|
93/68 (73%)
|
2001/2002: octubre/març
|
Gabon i República del Congo
|
122/96 (79%)
|
2002/2003: desembre/abril
|
República del Congo, en les viles de Mbomo i Kellé del
Departament Cuvette Ouest
|
143/128 (90%)
|
2003: novembre - desembre
|
República del Congo, en les viles de Mbomo i Mbandza
del Departament Cuvette Ouest
|
35/29 (83%)
|
2007: abril - octubre
|
Kasai Occidental (República del Congo)
|
264/187 (71%)
|
2012: juliol - octubre
|
Uganda
|
24/17 (71%)
|
2012: setembre - novembre
|
República Democràtica del Congo
|
62/34 (55%)
|
2014
|
Guinea-Conakry, Libèria i Sierra Leone (Brot de 2014
d'àfrica occidental)
|
dissabte, 9 d’agost del 2014
Escrit per:
ccorbella
Autòmats cel·lulars: l'ordre dins del caos!
Heu sentit mai a parlar dels autòmats cel·lulars? D'entrada sembla un concepte una mica estrany...Estem parlant de biologia? Doncs en realitat no, són matemàtiques!
Un autòmat cel·lular és un model matemàtic que consisteix en una sèrie de regles que regeixen el comportament d'un nombre finit de cel·les elementals col·locades inicialment en una xarxa regular. Segons les regles que haguem dictat inicialment, el nostre sistema de cel·les evoluciona d'una manera o una altra.
Posem-ne un exemple senzill:
Tenim un autòmat cel·lular format per vuit cel·les disposades en una mateixa fila. Cada una de les cel·les només pot tenir dos estats, 0 o 1 (el zero és blanc i l'1 és negre).
Inicialment les cel·les tenen l'estat que nosaltres els otorguem, però a l'instant següent aquest estat canviarà depenent del seu entorn, és a dir, depenent del seu estat i de l'estat en que es troben les dues cel·les veïnes (la de la dreta i la de l'esquerra) en l'instant anterior. El patró que segueixen aquests canvis no és aleatori, sinó que ve regit per les regles que imposem.
En la situació que acabem de plantejar poden haver-hi 8 possibles entorns diferents:
Per cada entorn imposarem un canvi a la cel·la central, de manera que, a cada instant, totes les cel·les canviaran i s'anirà formant una estructura de manera automàtica.
Aquí tenim alguns exemples d'autòmats cel·lulars, i podem observar com són de diferents quan en canviem les regles d'evolució.
Diverses regles amb els seus dissenys corresponents |
Si no coneixem cap llenguatge informàtic amb el que poguem programar un autòmat cel·lular, la manera més fàcil (que no ràpida) és inventar-nos unes regles i anar dibuixant l'estructura en un full quadriculat. Després podem provar de canviar les regles i veure com apareix un dibuix completament diferent!
En el medi natural també en podem trobar: algunes petxines tenen patrons generats per autòmats cel·lulars de manera natural, on cada cèl·lula genera pigment d'acord amb l'estat de les seves cèl·lules veïnes.
Autòmat cel·lular natural que presenta l'espècie Conus textile |
Un exemple més complex i curiós d'autòmat cel·lular és l'anomenat "Joc de la vida", creat pel matemàtic britànic John Conway al 1970.
Aquest autòmat consisteix en una graella quadrada on cada cel·la pot estar morta o viva, i està envoltada de 8 cel·les veïnes. L'evolució del conjunt ve donada per quatre senzilles normes:
1. Una cel·la viva amb menys de dos veïns vius mor per aïllament.
2. Una cel·la viva amb dos o tres veïns viu continua viva.
3. Una cel·la viva amb més de tres veïns vius mor per sobrepoblació.
4. Una cel·la morta amb exactament tres veïns vius torna a la vida.
A partir d'aquestes normes i d'una configuració inicial, es poden crear patrons de comportament ben diferents. Depenent de com col·loquem les cel·les vives a l'inici, la població fins i tot pot arribar a extingir-se!
Per saber-ne més:
o
- Modern cellular Automata
- Virtual Complexity Lab at Monash University-Cellular Automata (en aquest enllaç trobareu diferents simulacions d'autòmats cel·lulars que podreu modificar)
1. Una cel·la viva amb menys de dos veïns vius mor per aïllament.
2. Una cel·la viva amb dos o tres veïns viu continua viva.
3. Una cel·la viva amb més de tres veïns vius mor per sobrepoblació.
4. Una cel·la morta amb exactament tres veïns vius torna a la vida.
A partir d'aquestes normes i d'una configuració inicial, es poden crear patrons de comportament ben diferents. Depenent de com col·loquem les cel·les vives a l'inici, la població fins i tot pot arribar a extingir-se!
Exemple de patró de Joc de la vida, d'evolució oscil·lant. |
Per saber-ne més:
o
- Modern cellular Automata
- Virtual Complexity Lab at Monash University-Cellular Automata (en aquest enllaç trobareu diferents simulacions d'autòmats cel·lulars que podreu modificar)